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Let’s suppose we want to compare some quantity, like an asymmetry,
calculated with and without some correction, like an alignment correction.
Since the alignment correction changes the value of θ and ϕ, events will
migrate from each kinematic bin to the neighboring ones, and, also, from
the neighboring bins into the given bin.

We can denote with A|| and A′
|| the asymmetries before and after the

correction, with:

A|| =
A − B

A + B
A′

|| =
A′

− B′

A′ + B′
, (1)

where A and B denote for example the yields for two target states (A =
NA/LA, and B = NB/LB , with N and L the number of events and the
luminosities in the given target state).

If, in order to compare them, we are interested in calculating the differ-
ence or the ratio of the two asymmetries, then in the formula for the error
propagation we have to include a term1 which looks like

cov(A||, A
′
||) . (2)

This covariance term can be written as:
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)

=

cov
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−
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(

A

A + B
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A′ + B′
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+ cov

(

B

A + B
,

B′

A′ + B′

)

. (3)

Each of these terms is easily calculable if one considers that:

cov(f(A, B), C) =
∂f

∂A
cov(A, C) +

∂f

∂B
cov(B, C) . (4)

One then obtains:
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A
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=

B

(A + B)2

B′

(A′ + B′)2
cov(A, A′) −

B

(A + B)2

A′

(A′ + B′)2
cov(A, B′) −

−

A

(A + B)2

B′

(A′ + B′)2
cov(B, A′) +

A

(A + B)2

A′

(A′ + B′)2
cov(B, B′) ,(5)

1See internal note 02-008.
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The result of eq.(3) is

cov

(

A − B

A + B
,
A′

− B′

A′ + B′

)

=

4

(A + B)2(A′ + B′)2
[BB′ cov(A, A′) + AA′ cov(B, B′)−

− AB′ cov(B, A′) − BA′ cov(A, B′)] (9)

In the most common cases the quantities A and B are not correlated, as in
the case in which they are calculated for two different target states, and as
a consequence the last two terms are zero.

The error of A|| − A′
|| becomes:

σ2 = σ2

A||
+ σ2

A′
||
− 2 cov(A||, A

′
||) =

σ2

A||
+ σ2

A′
||
−

8

(A + B)2(A′ + B′)2
[BB′ cov(A, A′) + AA′ cov(B, B′)]

(10)

The problem is then reduced to calculating the correlation between A
(B) before and after the correction.

For partially correlated variables we know that:

cov(A, A′) =
σ2

A
σ2

A′

σ2

A∩A′

. (11)
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In the case in which A can be expressed as A = NA/LA, one has that

σ2

A =
NA

L2

A

, σ2

A′ =
N ′

A

L2

A

, σ2

A∩A′ =
NA − Nout

A

L2

A

(12)

where Nout

A
are the events that have migrated out of the given bin2. One

then obtains:

cov(A, A′) =
1

L2

A

NANA′

NA − Nout

A

. (13)

2Note that N
′

A
= NA − N

out

A
+ N

in

A
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